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ABSTRACT: The products of reaction of thea-(N,N-dimethylthiocarbamoyl)-4-methoxybenzyl carbocation (1�)
intermediate of solvolysis ofa-(N,N-dimethylthiocarbamoyl)-4-methoxybenzyl benzoate esters (1-O2CAr ) show a
strong dependence on solvent. The only product from reaction in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is 2-
dimethylamino-6-methoxybenzothiophene (2) from intramolecular cyclization of1�. The reaction of1� in 50:50
(v/v) methanol–water (I = 0.50, NaClO4) gives mainly the adducts to solvent. In 50:50 (v/v) trifluoroethanol–water
(I = 0.50, NaClO4), 1� partitions between reaction with solvent (ks, 27% yield), cyclization to form2 (kc, 3% yield)
and nucleophilic addition of2 to 1� (kalk, 70% yield) to form dimeric product3. The yield of 3 in 50:50 (v/v)
trifluoroethanol–water (I = 0.50, NaClO4) is independent of the leaving group at1-O2CAr and remains constant as the
concentration of the substrate is increased fourfold. These data show that the rate-determining step for dimerization of
1-O2CAr is ionization of substrate to form1� and that the products of the reaction are determined by the rate constant
ratio for partitioning of1� between addition of solvent and cyclization. The rate constant ratios determined for the
partitioning of 1� in 50:50 (v/v) trifluoroethanol–water (I = 0.50, NaClO4) were ks/kc = 0.8Mÿ1 and kalk/ks =
540 000Mÿ1.  1998 John Wiley & Sons, Ltd.
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INTRODUCTION

We recently reported that the reaction ofa-(N,N-
dimethylthiocarbamoyl)-4-methoxybenzyl pentafluoro-
benzoate (1-O2C6F5) in mixed aqueous organic solvents
proceeds by aDN� AN (SN1) mechanism through ana-
thioamide-substituted 4-methoxybenzyl carbocation in-
termediate1�.1 We were very surprised to observe
conversion of the carbocation1� to 2 and then to the
dimeric product3 in a total yield ofca 70% because, to
the best of our knowledge, there is no precedent in
organic chemistry for dimerization of the extremely low
steady-state concentrations [<10ÿ8 M, see Discussion] of
the strongly electrophilic species1� in a nucleophilic
aqueous solvent.2

We report here the results of a study of the effects of
changing solvent, substrate concentration and substituted
benzoate leaving group on the products of the reaction of
1-O2CAr and the time course for formation of the
products in 50:50 (v/v) trifluoroethanol–water (I = 0.50,
NaClO4) (see Scheme 1). The experimental results define
the rate-determining and product-determining steps for
the dimerization of1� and the rate constant ratios for

partitioning of1� between intramolecular cyclization to
2, nucleophilic addition of solvent and nucleophilic
addition of alkene2.

EXPERIMENTAL

Materials. HPLC-grade methanol was purchased from
Fisher and HPLC-grade acetonitrile and Gold label-grade
2,2,2-trifluoroethanol from Aldrich. Water was purified
by distillation and passage through a Milli-Q purification
system. All other organic chemicals used for syntheses
were of reagent grade and were used without further
purification.

Syntheses. The methods for the preparation ofa-(N,N-
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dimethylthiocarbamoyl)-4-methoxybenzyl pentafluoro-
benzoate(1-O2CC6F5) and a-(N,N-dimethylthiocarba-
moyl)-4-methoxybenzyl 4-nitrobenzoate(1-O2CC6H4-
4-NO2) weredescribedin a recentpaper.1

HPLC product analyses. Productanalyseswere carried
out at roomtemperature(22� 2°C). Thereactionswere
initiated by making a 100-fold dilution of substratein
acetonitrileto giveafinal concentrationof 0.05–0.2mM.

Theproceduresfor HPLC analyseswereasdescribedin
earlier work,3,4 except that the mixed methanol–water
solvent used to elute the productsof the reaction of
1-O2CC6F5 in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)
was preparedby mixing methanol and water which
contained0.1M sodiumcarbonate(pH 9) to give a final
concentrationof 10mM buffer. The buffered aqueous
phasewasusedbecause2 appearsto be unstableunder
theseconditionsto elution with unbufferedsolutionsof
methanol–water.The fractional yield of 2 observedfor
reactionin othersolventswasnot affectedby additionof
this buffer.

The productsof the reactionof 1-O2CAr weremoni-
toredat271nm,which is �maxfor 1-OH. Theprocedures
for identification of the reaction products have been
describedin earlierwork.1,2 Theproductsof thereaction
of 1-O2CC6F5 weredeterminedafter completionof the
reaction (ca 10 half-times), and the products of the
reactionof 1-O2CC6H4-4-NO2 weredeterminedafter a
reactiontimeof 30hours(casix half-times).Theratiosof
theyieldsof productswerecalculatedfrom the ratiosof
their peakareasfrom HPLC analysisand the ratios of
their extinction coefficients.2 In caseswhere 1 mol of
substrate1-O2CAr reacts to form 1 mol of product
1-OSolv or 2, the fraction of the maximumtheoretical
productyield wascalculatedusingEqn1 whereA1-OSolv,
A2 and A3 refer to the areasof the respectiveproduct
peaks from HPLC analysis and e1-OSolv= 13000,

e2 = 11200 and e3 = 22000Mÿ1 cmÿ1 are the extinction
coefficientsof theseproductsat 271nm.2 Thefractionof
the theoreticalyield of thedimer3 wascalculatedusing
Eqn(2). The termsin thenumeratorof Eqns(1) and(2)
are proportionalto the molesof productformed,while
the term in the denominator [A1-OSolv/e1-OSolv�A2/
e2�2(A3/e3)] is proportional to the original numberof
moles of substrate.Values of A3/e3 for the dimeric
producthavebeenmultiplied by two in orderto account
for thefact that2 mol of substrateareconsumedfor each
mole of dimeric product3 formed.

fP � Ap="P

A1ÿOSolv="1ÿOSolv� A2="2� 2�A3="3� �1�

f3 � 2�A3="3�
A1ÿOSolv="1ÿOSolv� A2="2� 2�A3="3� �2�

In oneexperiment,the time coursefor the reactionof
1-O2CC6H4-4-NO2 in 50:50(v/v) trifluoroethanol–water
(I = 0.50,NaClO4) wasmonitored.The fractionalyields
of productsduring this reactionwere calculatedusing
Eqns1 and2, wherethe term in the numeratorrefersto
the areaof the productpeakobservedfor analysisof a
fixed volumeof the reactionmixture at a given reaction
time, andthe termsin thedenominatorrefer to theareas
of these product peaks observedafter more than 10
reactionhalf-times.Theseexperimentswere conducted
using 9-hydroxy-9-methylfluorene as a stable internal
standardin order to correct for small variationsin the
injection volumefor different HPLC analyses.

RESULTS

Five products were observed for the solvolysis of
1-O2CC6F5 in 50:50 (v/v) trifluoroethanol–water

Table 1. Yield of the products of reaction of 1-O2CAr observed in different solventsa

Productyield (%)b

Substrateandreactionconditions 1-OSolv 2 3

1-O2CC6F5 in 50:50(v/v) methanol–waterc 98
(1-OMe) 30 <1 2
(1-OH) 68

1-O2CC6F5 in 50:50(v/v) trifluoroethanol–water 27
(1-OTFE) 3 3 69
(1-OH) 25

1-O2CC6H4-4-NO2 in 50:50(v/v) trifluoroethanol–water 27
(1-OTFE) 3 3 71
(1-OH) 24

1-O2CC6F5 in HFIPd <1 100 <1

a At roomtemperature(22� 2°C) andI = 0.50(NaClO4), unlessnotedotherwise.
b Productyields weredeterminedby HPLC analysis.
c Datafrom Ref. 2.
d For reactionin a solutionof neatHFIP (1,1,1,3,3,3-hexafluoro-2-propanol)which containsno addedsalt.
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(I = 0.50, NaClO4): the solvent adducts 1-OH and
1-OTFE, the alkene 2, the dimeric product 3 and an
unknownproduct,whosestructurewas not determined.
The peakareafrom HPLC analysisat 271nm for this
unknownproductaccountsfor lessthan2% of the total
peak areasfor the other reactionproducts.It was not
possibleto calculatean absoluteyield for this product,
whosestructureandextinctioncoefficientscould not be
determined.This unknownreactionproductwasignored
when calculating the absolute yields for the other
products [Eqns (1) and (2)], becausethe sum of the
yields of these other products was not significantly
different from 100%.

The observedyields of the productsof reaction of
1-O2CC6F5 and1-O2CC6H4-4-NO2 in severaldifferent
solventsare given in Table 1. The yields reportedin
Table1 for reactionin 50:50(v/v) trifluoroethanol–water
should replacethe valuesfrom an earlier report (42%,
1-OSolv; 5%, 2; 53%,3),2 which werecalculatedasthe
simpleratiosof the molesof individual productformed
dividedby thesumof themolesof all reactionproducts.
The earlier calculationsof fractional productyields are
incorrect becausethey failed to take into accountthat
2 mol of substrateare required to form 1 mol of the
dimeric product3 [seeEqns(1) and (2) in the Experi-
mentalsection).

Figure1 showstheeffectof a fourfold increasein the
concentrationof 1-O2CC6F5 on the yield of productsof
solvolysisin 50:50(v/v) trifluoroethanol–water(I = 0.50,
NaClO4).

Figure 2 showsthe time coursefor formation of the
productsof the reactionof 1� 10ÿ4 M 1-O2CC6H4-4-
NO2 in 50:50 (v/v) trifluoroethanol–water (I = 0.50,
NaClO4).

DISCUSSION

It was shownin earlier work that (1) the solvolysisof
1-O2CAr in aqueoussolvents occurs by a stepwise
mechanismthroughthe a-thioamide-stabilizedcarboca-
tion intermediate1�;1 (2) this carbocationintermediate
showsa very large selectivity for reactionwith azide
ion;1 (3) dimeric 3 is a major productof the reactionof
1-O2CC6F5 in 50:50 (v/v) trifluoroethanol–water;2 and
(4) thedimericproduct3 formsby nucleophilicaddition
of 2 to 1� (Scheme1).2

Rate-determining and product-determining steps
for reaction of 1-O2CAr

Figure 1 showsthat the yields of the productsof the
reactionof 1-O2CC6F5 in 50:50 (v/v) trifluoroethanol–
water, including the dimer, are independentof the
concentrationof substrate.This observationrequiresthat
theseproductsform by reactionsthatarefirst-orderin the
concentrationof 1-O2CC6F5, and is consistentwith the
conclusionthat the rate-determiningstepfor all of these
reactionpathwaysis ionization of the substrateto form
1� andtheproduct-determiningstepis thepartitioningof
1�.

Theobservedfirst-orderrateconstantfor solvolysisof
1-O2CC6F5 (ksolv = 4.2� 10ÿ3 sÿ1) is 110-fold larger
than for solvolysis of 1-O2CC6H4-4-NO2 (ksolv =
3.6� 10ÿ5) in 50:50(v/v) trifluoroethanol–water,1 which

Figure 1. Dependence of the yields of the products of
reaction of 1-O2CC6F5 in 50:50 (v/v) tri¯uoroethanol±water
on the concentration of substrate for a reaction at room
temperature (22� 2°C) and I = 0.50 (NaClO4)

Figure 2. Time course for reaction of 1-O2CC6H4-4-NO2

(1� 10ÿ4
M) in 50:50 (v/v) tri¯uoroethanol±water at 25°C

(I = 0.50, NaClO4). The product yields, fP, are equal to the
molar fraction of the original substrate (1� 10ÿ4

M

1-O2CC6H4-4-NO2) consumed in the formation of the
product. The ®nal yields of 1-OSolv and 3 are indicated on
the ordinate. (&) 1-OSolv; (~) 2; (*) 3. The inset omits the
experimental points from the time course for formation of
the dimeric product 3 in order to show more clearly the lag in
the formation of this product
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correspondsto a 110-fold fasterrateof formationof the
carbocation reaction intermediate. This requires the
accumulationof a 150-fold larger concentrationof the
intermediate1� at the steadystateduring reaction of
1-O2CC6F5 comparedwith 1-O2CC6H4-4-NO2, because
the rateconstantsfor the disappearanceof 1� generated
by the ionization of thesetwo substratesare the same.
Onceagain,theyield of productsof thereactionof 1� are
seento be independentof the steady-stateconcentration
of this carbocationduringsolvolysisof 1-O2CAr (Table
1). The observationof identicalyields of productsfrom
reactionof 1-O2CC6F5 and1-O2CC6H4-4-NO2 requires
similar relative velocities for partitioning of 1� (v =
kalk[1

�][2], v = ks[1
�] andv = kc[1

�], Scheme1) so that
theconcentrationof alkene2 mustbethesameduringthe
courseof reactionof thesetwo substrates.

The following expressioncan be derivedby making
the steady-stateassumptionfor the concentrationof the
carbocationintermediate1� ([1�]ss) during the initial
stagesof the reactionof 1-O2CC6H4-4-NO2 in 50:50
(v/v) trifluoroethanol–water: [1�]ss= (3.6� 10ÿ5 sÿ1)
(1� 10ÿ4 M)/(ks� kc), where ksolv = 3.6� 10ÿ5 sÿ1 is
the observedfirst-order rate constantfor solvolysis of
1-O2CC6H4-4-NO2 and 1� 10ÿ4 M is the initial con-
centrationof thesubstrate.1 It is known1 thatks� 1 sÿ1,
so that the concentrationof the speciesundergoingdi-
merization,[1�]ss, is much lessthan 36nM. The obser-

vationof dimerizationof this dilute electrophilicreagent
in anucleophilicsolventseems,atfirst glance,incredible.
However,dimerizationof 1� canbeshownto bealogical
consequenceof the unique chemical reactivity of this
compound(Scheme1).

Reaction mechanism

Wewereatfirst confusedby theobservationsthatforma-
tion of thedimericproduct3 is first orderin theconcen-
tration of 1-O2CAr , andthat the yield of this productis
independentof the concentrationof the steady-state
reactionintermediate1�, becauseit wasexpectedthatthe
dependenceof the yields of the products of simple
nucleophilicsubstitutionat 1-O2CAr on substratecon-
centrationwould bedifferent from that for theformation
of a dimeric product. However, these results can be
simply explainedprovidedthat kc is the product-deter-
mining step for dimerization,so that essentiallyevery
mole of 2 formedby cyclization reactswith 1� to form
dimer, that is, if 2 doesnot accumulateto a largeextent
during the reaction but insteadreactsnearly quantita-
tively with 1� to form dimeric product 3. With this
constraint,the alkene2 becomesa steady-statereaction
intermediatewith equalratesof formationby cyclization
of 1� anddisappearanceby nucleophilicadditionto 1� to

Scheme 1
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form 3. The following experimentalobservationscanbe
accountedfor by treatmentof 2 asasteady-statereaction
intermediate:

1. Figure2 showsthat thereis a lag in the formationof
the dimeric product3 at relatively early timesduring
the reactionof 1-O2CC6H4-4-NO2 while the concen-
trationof 2 increasesto aroughlyconstantsteady-state
concentration.

2. The expressionfor the rate constantratio for par-
titioning of the carbocationintermediate1� between
addition of solvent and 2 [eqn (3)] was derived by
making the assumptionthat the concentrationof 2
remainsconstantwith time (d[2]ss/dt = 0 = kc[1

�] ÿ
kalk[1

�][2]ss) andthensolvingfor [2]ss[Eqn (4)]. This
equationpredicts that the relative yields of dimeric
product 3 and the solvent adductswill dependonly
uponthe rateconstantratio for the partitioningof 1�

between nucleophilic addition of solvent (ks) and
intramolecular cyclization to form 2 (kc). This
providesa simple rationalizationfor the observation
of identical product yields from partitioning of the
commonintermediateof reactionof 1-O2CC6F5 and
1-O2CC6H4-4-NO2.

�1ÿOSolv�
�3� � ks

kalk�2�ss
� ks

kc
� 0:8 �3�

�2�ss�
kc

kalk
� 2:3� 10ÿ6 M �4�

3. Equation (4), which follows directly from the
assumptionof a constantsteady-stateconcentration
for 2, requiresthattheconcentrationof thealkene2 at
the steadystatebe equalto the rateconstantratio for
partitioning of 2 betweenintramolecularcyclization
andreactionwith solvent.Theconcentrationof 2 atthe
steady state is approximately equal to [2]ss=
[1-O2CC6H4-4-NO2] fP = (1� 10ÿ4 M) (0.023)=
2.3� 10ÿ6 M, where fP = 0.023 is an approximate
averagefractional conversionof substrateto 2 (Fig.
2). The rate constantratio kalk/ks = 540000Mÿ1 for
partitioning of 1� betweennucleophilic addition of
50:50 (v/v) trifluoroethanol–water and 2 can then be
obtainedfrom Eqn (5), which is derivedby combina-
tion of Eqns (3) and (4). This value is significantly
larger than kalk/ks = 70000Mÿ1 determinedfrom the
product yields for reaction of 1-O2CC6F5 in the
presenceof added2 in 50:50(v/v) methanol–water.2

Thedifferencein theserateconstantratiosis primarily
the result of the larger nucleophilicity of aqueous
methanolcomparedwith aqueoustrifluoroethanol.2,3

To the best of our knowledge, this is the highest
observednucleophilic reactivity for an alkenecom-
paredwith thenucleophilicsolventwater.5,6

kalk

ks
� �3�
�2�ss�1ÿOSolv� � 540000 Mÿ1 �5�

Table1 showsthecuriousresultthatasubstantialyield
of the dimeric product3 is observedfor the reactionof
1-O2CAr in 50:50(v/v) trifluoroethanol–water,but that
little or no 3 is observedfor the reactionin 50:50(v/v)
methanol–water,a solventsignificantlymorenucleophi-
lic than aqueoustrifluoroethanol,or for the reactionin
HFIP, which is much less nucleophilic than aqueous
trifluoroethanol.7,8 Thesedatashowthatstringentcondi-
tionsmustbemet in orderto observetheformationof 3.
Dimerization is unimportantin 50:50 (v/v) methanol–
waterbecausethe intramolecularcyclization reactionis
unimportant in this strongly nucleophilic solvent
(ks� kc). The observation that dimerization is also
unimportant in HFIP shows that the change from
trifluoroethanol–waterto this weakly nucleophilic but
strongly acidic solvent resultsin a large increasein kc

comparedwith kalk. The changeprobably reflects the
oppositeeffectsof hydrogenbondsbetweensolventand
thedimethylaminogrouponthenucleophilicreactivityof
2 (decreasein kalk, see4), andtheelectrophilicreactivity
of the sulfur cation towardsaddition of the 4-methoxy-
phenylring (increasein kc, see5).

Thevalueof ks/kc = 0.8[Eqn(3)] for partitioningof 1�

showsthat the reactivity of 50:50(v/v) trifluoroethanol–
water in a bimolecularnucleophilicaddition reactionis
approximatelyequalto theelectrophilicreactivity of the
-thioamide group in an intramolecular reaction. This
probably representsa large effective molarity9 of this
functionalgroup in an intramolecularreactionsincewe
arenot awareof anyreportsof bimolecularelectrophilic
addition of a-thioamide-substituted carbocationsto a
phenylring.

In summary,thedimerizationof 1� is theresultof (1)
the approximatelyequal ratesof cyclization of 1� and
nucleophilic addition of 50:50 (v/v) trifluoroethanol–
waterto 1� (ks/kc = 0.8,Scheme1), (2) the largechange
in the polarity of the benzylic carbon of 1�, from
electrophilicto nucleophilic,whichoccursoncyclization
of 1� to form the carbon nucleophile2, and (3) the
5� 105 timesgreaterreactivity of 2 thanthe solventof
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50:50(v/v) trifluoroethanol–watertowardsadditionto 1�

whichresultsin thenearlyquantitativeadditionof 2 to 1�

to form 3. We view the circumstanceshere to be so
improbablethatthedimerizationof low concentrationsof
the steady-statereactionintermediate1� will probably
remaina completelyuniqueorganicreaction.
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